Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Acta Physiol (Oxf) ; : e14145, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38647279

RESUMO

AIMS: Active cigarette smoking is a major risk factor for chronic obstructive pulmonary disease that remains elevated after cessation. Skeletal muscle dysfunction has been well documented after smoking, but little is known about cardiac adaptations to cigarette smoking. The underlying cellular and molecular cardiac adaptations, independent of confounding lifestyle factors, and time course of reversibility by smoking cessation remain unclear. We hypothesized that smoking negatively affects cardiac metabolism and induces local inflammation in mice, which do not readily reverse upon 2-week smoking cessation. METHODS: Mice were exposed to air or cigarette smoke for 14 weeks with or without 1- or 2-week smoke cessation. We measured cardiac mitochondrial respiration by high-resolution respirometry, cardiac mitochondrial density, abundance of mitochondrial supercomplexes by electrophoresis, and capillarization, fibrosis, and macrophage infiltration by immunohistology, and performed cardiac metabolome and lipidome analysis by mass spectrometry. RESULTS: Mitochondrial protein, supercomplex content, and respiration (all p < 0.03) were lower after smoking, which were largely reversed within 2-week smoking cessation. Metabolome and lipidome analyses revealed alterations in mitochondrial metabolism, a shift from fatty acid to glucose metabolism, which did not revert to control upon smoking cessation. Capillary density was not different after smoking but increased after smoking cessation (p = 0.02). Macrophage infiltration and fibrosis (p < 0.04) were higher after smoking but did not revert to control upon smoking cessation. CONCLUSIONS: While cigarette-impaired smoking-induced cardiac mitochondrial function was reversed by smoking cessation, the remaining fibrosis and macrophage infiltration may contribute to the increased risk of cardiovascular events after smoking cessation.

2.
Exp Cell Res ; 433(2): 113820, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37879549

RESUMO

The Warburg effect links growth and glycolysis in cancer. A key purpose of the Warburg effect is to generate glycolytic intermediates for anabolic reactions, such as nucleotides → RNA/DNA and amino acids → protein synthesis. The aim of this study was to investigate whether a similar 'glycolysis-for-anabolism' metabolic reprogramming also occurs in hypertrophying skeletal muscle. To interrogate this, we first induced C2C12 myotube hypertrophy with IGF-1. We then added 14C glucose to the differentiation medium and measured radioactivity in isolated protein and RNA to establish whether 14C had entered anabolism. We found that especially protein became radioactive, suggesting a glucose → glycolytic intermediates → non-essential amino acid(s) → protein series of reactions, the rate of which was increased by IGF-1. Next, to investigate the importance of glycolytic flux and non-essential amino acid synthesis for myotube hypertrophy, we exposed C2C12 and primary mouse myotubes to the glycolysis inhibitor 2-Deoxy-d-glucose (2DG). We found that inhibiting glycolysis lowered C2C12 and primary myotube size. Similarly, siRNA silencing of PHGDH, the key enzyme of the serine biosynthesis pathway, decreased C2C12 and primary myotube size; whereas retroviral PHGDH overexpression increased C2C12 myotube size. Together these results suggest that glycolysis is important for hypertrophying myotubes, which reprogram their metabolism to facilitate anabolism, similar to cancer cells.


Assuntos
Fator de Crescimento Insulin-Like I , Neoplasias , Animais , Camundongos , Fator de Crescimento Insulin-Like I/metabolismo , Fosfoglicerato Desidrogenase/genética , Fosfoglicerato Desidrogenase/metabolismo , Fosfoglicerato Desidrogenase/farmacologia , Fibras Musculares Esqueléticas/metabolismo , Neoplasias/metabolismo , RNA/metabolismo , Hipertrofia/metabolismo , Glucose/farmacologia , Aminoácidos/genética , Aminoácidos/metabolismo , Aminoácidos/farmacologia
3.
J Cachexia Sarcopenia Muscle ; 13(6): 3048-3061, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35978267

RESUMO

BACKGROUND: Systemic inflammation is associated with skeletal muscle atrophy and metabolic dysfunction. Although the nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3) inflammasome contributes to cytokine production in immune cells, its role in skeletal muscle is poorly understood. Here, we studied the link between inflammation, NLRP3, muscle morphology, and metabolism in in vitro cultured C2C12 myotubes, independent of immune cell involvement. METHODS: Differentiated C2C12 myotubes were treated with lipopolysaccharide (LPS; 0, 10, and 100-200 ng/mL) to induce activation of the NLRP3 inflammasome with and without MCC950, a pharmacological inhibitor of NLRP3-induced IL-1ß production. We assessed markers of the NLRP3 inflammasome, cell diameter, reactive oxygen species, and mitochondrial function. RESULTS: NLRP3 gene expression and protein concentrations increased in a time-dependent and dose-dependent manner. Intracellular IL-1ß concentration significantly increased (P < 0.0001), but significantly less with MCC950 (P = 0.03), suggestive of moderate activation of the NLRP3 inflammasome in cultured myotubes upon LPS stimulation. LPS suppressed myotube growth after 24 h (P = 0.03), and myotubes remained smaller up to 72 h (P = 0.0009). Exposure of myotubes to IL-1ß caused similar alterations in cell morphology, and MCC950 mitigated these LPS-induced differences in cell diameter. NLRP3 appeared to co-localize with mitochondria, more so upon exposure to LPS. Mitochondrial reactive oxygen species were higher after LPS (P = 0.03), but not after addition of MCC950. Myotubes had higher glycolytic rates, and mitochondria were more fragmented upon LPS exposure, which was not altered by MCC950 supplementation. CONCLUSIONS: LPS-induced activation of the NLRP3 inflammasome in cultured myotubes contributes to morphological and metabolic alterations, likely due to its mitochondrial association.


Assuntos
Indenos , Inflamassomos , Humanos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Lipopolissacarídeos/farmacologia , Inflamação , Sulfonamidas/farmacologia , Músculo Esquelético/metabolismo , Furanos/farmacologia
4.
J Cell Physiol ; 231(6): 1283-90, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26505782

RESUMO

Insulin-like growth factor-1 (IGF-1) is anabolic for muscle by enhancing the rate of mRNA translation via activation of AKT and subsequent activation of the mammalian target of rapamycin complex 1 (mTOR), thereby increasing cellular protein production. IGF-1 is also anabolic for bone, but whether the mTOR pathway plays a role in the rate of bone matrix protein production by osteoblasts is unknown. We hypothesized that anabolic stimuli such as mechanical loading and IGF-1 stimulate protein synthesis in osteoblasts via activation of the AKT-mTOR pathway. MC3T3-E1 osteoblasts were either or not subjected for 1 h to mechanical loading by pulsating fluid flow (PFF) or treated with or without human recombinant IGF-1 (1-100 ng/ml) for 0.5-6 h, to determine phosphorylation of AKT and p70S6K (downstream of mTOR) by Western blot. After 4 days of culture with or without the mTOR inhibitor rapamycin, total protein, DNA, and gene expression were quantified. IGF-1 (100 ng/ml) reduced IGF-1 gene expression, although PFF enhanced IGF-1 expression. IGF-1 did not affect collagen-I gene expression. IGF-1 dose-dependently enhanced AKT and p70S6K phosphorylation at 2 and 6 h. PFF enhanced phosphorylation of AKT and p70S6K already within 1 h. Both IGF-1 and PFF enhanced total protein per cell by ∼30%, but not in the presence of rapamycin. Our results show that IGF-1 and PFF activate mTOR, thereby stimulating the rate of mRNA translation in osteoblasts. The known anabolic effect of mechanical loading and IGF-1 on bone may thus be partly explained by mTOR-mediated enhanced protein synthesis in osteoblasts.


Assuntos
Fator de Crescimento Insulin-Like I/farmacologia , Mecanotransdução Celular , Osteoblastos/efeitos dos fármacos , Biossíntese de Proteínas , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Células 3T3 , Animais , Técnicas de Cultura de Células , Relação Dose-Resposta a Droga , Ativação Enzimática , Camundongos , Osteoblastos/enzimologia , Fosfatidilinositol 3-Quinase/metabolismo , Fosforilação , Estimulação Física , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Fluxo Pulsátil , RNA Mensageiro/genética , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Serina-Treonina Quinases TOR/antagonistas & inibidores , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA